Transport des Energieträgers Ammoniak (NH₃)

Chancen als grüner Energieträger:

- Hohe volumetrische Energiedichte
- Derivat mit hohem Wasserstoffgehalt
- Globaler (Wasserstoff-)Transport im industriellen Maßstab möglich
- Weitreichende Erfahrungen bei verschiedenen Transportoptionen
- Direkte Nutzung als Treibstoff für Frachtschiffe
- Umwidmung von LNG Terminals
- Lagerung über lange Zeiträume
- **Etablierte Produktionsprozesse**

Flüssiger Transport

Bei Umgebungstemperatur: Druck > 8 bar, bei Umgebungsdruck: Temperatur < -33 °C

Option	Energieaufwand pro MWh Ammoniak
Straße	1,65 kWh/ _{100km}
Schiene	$0.95 \frac{\text{kWh}}{100 \text{km}}$
Schiff	$0.25 \mathrm{kWh}/\mathrm{_{100km}}$ zusätzlich 0,85 kWh an Terminals
Pipeline	$0.19 { m kWh}/_{ m 100km}$ einmalig 3,4 kWh für initiale Verdichtung
ے 0.06 ج	
Iransportkosten in €/kWh ¹,³ co.0 co.0 co.0	
anspc in €/k	—— Pipeline
= 1	—O— Schiff

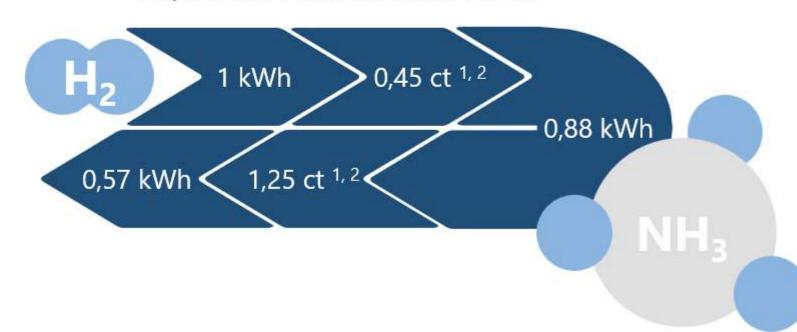
Transport in Europa als Gefahrgut vorwiegend in Lkw und Zügen.

Bei steigenden Transportmengen Pipeline-Transport die relevanteste Option.

Kosten für den Neubau von Leitungen u.a. abhängig von

- Material, Durchmesser
- Über-/unterirdischem Bau
- Ländlichem/urbanem Raum
- → ca. 0,5 Mio. €/km

Bestehendes Netzwerk: USA etwa 5000 km



Europa unter 20 km

Umwandlungsprozesse

Bespielhaft für 1 kWh Wasserstoff bei 1 bar

Herausforderungen:

1000

In Abhängigkeit der geforderten Reinheit Reinigung des rückgewonnenen Wasserstoffs erforderlich

—Schiff

3000

2000

Transportstrecke in km

- Beschränkungen bei Bau von Anlagen und im Transport durch Toxizität
- Nutzungskonkurrenz zwischen energetischen Anwendungen und direkter Anwendung z.B. zur Düngemittelproduktion

Pro Terminal

Kapazitäten von

5-65 GWh/d

Hoher Energieaufwand durch Umwandlungsprozesse

0.00